本文目录一览
- 1,什么是实数
- 2,什么是实数
- 3,什么是实数
- 4,什么是实数
- 5,什么是实数
- 6,什么是实数
- 7,什么称为实数
1,什么是实数
2,什么是实数
实数包括有理数和无理数。其中有理数就是无限不循环小数,有理数包括整数和分数。
3,什么是实数
实数是相对于虚数的概念, 是一种能和数轴上的点有一对一的对应关系的数。 数学上,实数直观地定义为和数线上的点一一对应的数。本来实数只唤作数,后来引入了虚数概念,原本的数称作“实数”——意义是“实在的数”。 实数可以分为有理数和无理数两类。
4,什么是实数
实数是有理数和无理数的总称。数学上,实数定义为与数轴上的实数,点相对应的数,实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应,但仅仅以列举的方式不能描述实数的整体。实数可以分为有理数和无理数两类,或代数数和超越数两类。实数集通常用黑正体字母 R 表示。R表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。所有实数的集合则可称为实数系(real number system)或实数连续统。任何一个完备的阿基米德有序域均可称为实数系。在保序同构意义下它是惟一的,常用R表示。由于R是定义了算数运算的运算系统,故有实数系这个名称。实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后 n 位,n为正整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。
5,什么是实数
实数是有理数和无理数的总称,包括0。数学上,实数定义为与数轴上的点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。实数可实现的基本运算有加、减、乘、除、乘方等,对非负数(即正数和0)还可以进行开方运算。实数加、减、乘、除(除数不为零)、平方后结果还是实数。任何实数都可以开奇次方,结果仍是实数,只有非负实数,才能开偶次方其结果还是实数。扩展资料性质1.封闭性实数集对加、减、乘、除(除数不为零)四则运算具有封闭性,即任意两个实数的和、差、积、商(除数不为零)仍然是实数。2.有序性实数集是有序的,即任意两个实数3.传递性实数大小具有传递性,4.阿基米德性质实数具有阿基米德性质(Archimedean property)5.稠密性实数集具有稠密性,即两个不相等的实数之间必有另一个实数,既有有理数,也有无理数。参考资料:搜狗百科-实数
(一)数学名词。不存在虚数部分的复数,有理数和无理数的总称。 (二)真实的数字。 实数包括有理数和无理数。其中无理数就是无限不循环小数和开根开不尽的数,有理数就包括整数,分数,0. 数学上,实数直观地定义为和数轴上的点一一对应的数。本来实数仅称作数,后来引入了虚数概念,原本的数称作“实数”——意义是“实在的数”。 实数可以分为有理数和无理数两类,或代数数和超越数两类,或正数,负数和零三类。实数集合通常用字母 r 或 r^n 表示。而 r^n 表示 n 维实数空间。实数是不可数的。实数是实分析的核心研究对象。 实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后 n 位,n 为正整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。 ①相反数(只有符号不同的两个数,我们就说其中一个是另一个的相反数) 实数a的相反数是-a ②绝对值(在数轴上一个数所对应的点与原点0的距离) 实数a的绝对值是:│a│=①a为正数时,a=a ②a为0时, a=0 ③a为负数时,a=-a ③倒数 (两个实数的乘积是1,则这两个数互为倒数) 实数a的倒数是:1/a (a≠0)
6,什么是实数
实数是相对于虚数的概念, 是一种能和数轴上的点有一对一的对应关系的数。 数学上,实数直观地定义为和数线上的点一一对应的数。本来实数只唤作数,后来引入了虚数概念,原本的数称作“实数”——意义是“实在的数”。 实数可以分为有理数和无理数两类,或代数数和超越数两类,或正数,负数和零三类。
实数包括有理数和无理数其中无理数就是无限不循环小数,有理数就包括整数和分数。
数学上,实数直观地定义为和数轴上的点一一对应的数。本来实数仅称作数,后来引入了虚数概念,原本的数称作“实数”——意义是“实在的数”。
http://baike.baidu.com/view/14749.htm 这里为你讲解的十分详细。
有理数和无理数统称为实数. 2、实数和数轴上的点是一一对应的 在数轴上,右边的点表示的数比左边的点表示的数大. 3、在实数范围内,相反数、倒数、绝对值的意义与有理数范围的相反数、倒数、绝对值的意义完全一样. 4、实数可以进行加、减、乘、除、乘方等运算,而且有理数的运算法则与运算律对实数仍然适用. 实数理论 千百年来,数学爱们都在为整个数学寻找一个可靠的逻辑基础而不懈努力,然而分析的算术化,是以实数为基础的。不弄清实数的本质,不给实数以明确的定义、建立实数大小、运算等理论,连续函数的性质就无法彻底弄清,甚至连柯西收敛准则的充分性也无法严格证明。 这就迫使数学家们加快建立数学理论的步伐。 实数理论的核心问题是对无理数的认识,早在19世纪前期,柯西就已感到定义无理数的重要性。他在《分析教程》中,把无理数定义为收敛的有理数列的极限,设{yn}是一列有理数,如果存在一个数y,yn–>y,那么y就是一个无理数。 这个定义存在逻辑上的毛病。因为有理数序列{yn}不收敛于无理数(即y为有理数),则定义不出无理数;不收敛于有理数,那得不承认y是无理数才行,才能定义它是无是数,这就犯了循环定义的错误。 19世纪60年代末以后,出现了几种不同的无理数定义,分别出自维尔期特拉斯、梅雷、康托和戴德金等人之手,但不论他们定义实数的具体方法有何不同,都符合以下三个条件:第一,把不理数当作已知,从有理数出发定义无理数;第二,所定义的褛的性质及其运算律,与有理数所具有的一三,这样定义的实数是完备的,即在极限运算下不会再出现新数。为了避免柯西理数定义中的错误,维尔斯特拉斯坚持了他的表态观点,曾引入复合数概念。并用复合数定义有理数。如3(2/3)由3和2组成,其中=1是主要单位,元素=1/3。一个数已知它由什么元素组成,以及每个元素出现的次数时,就完全确定了,维尔斯特拉斯继而定义无理数如√2定义为1,41—-康托与梅雷定义的无理数基本相同,以有理数为出发点引进新数类—-实数。该数类包括有理数和无理数。在褛理论建树中,戴德金的实数理论是最完整的。人用有理数分割来定义实数这一思想来源于对直线连续性的考虑。人和康托大致同时提出了实数集与直线上的点一一对应假设。这一假设后来称为“康托-戴德金公理,他想,直线上的有理点是不连续的,必然由无量数填补空位,才能使直线成为连续。如何才能把这些补空位的无理数表示出来?戴德金用全体有理数的一个分割,来表示一个无理数。 上面所说的几种无理数定义,都把有理数当作已知的,因为任何一个有理数,都可以写成两个整数之比,因此问题归结为整数。那么对于整数需不需要再下定义呢?对这个问题也产生了分歧,维尔斯特拉斯就认为没必要,有理数逻辑地归为一对整数,对整数的逻辑无须做进一步研究。 戴德金则不然,他在《数的性质与意义》一书中,利用集合论思想给出了一个整数理论,虽因过于复杂未被采用,却给皮亚诺以直接启示。 1889年,意大利数学家皮亚诺在他的《算术原理新方法》一书中,用公理方法给出了自然数理论,从而完成了整个数系逻辑化工作。 皮亚诺出生于都灵,曾任都灵大学讲师和教授,是一位数理逻辑学家。他不像逻辑主义者那样,主张把数学建立在逻辑上,而是主张把逻辑作为数学工具。 皮亚诺在《算术原理方法》一书中,使用了一系列符号,如用∈,NO和a+分别表示属于、包含、自然数类和a的下一个自然数等;给出了四个不加定义的原始概念:集合,自然数,后继数和属于;还提出了自然数的五个公理: 1)1是自然数; 2)1不是任何自然数的后继数; 3)每个自然数a都不一个后继数a+; 4)如果a+=b+,则a=b; 5)如果s是一个含有1的自然数集合,且当s含有a时,也含有a+,则s含有全部自然数。这个公理是数学归纳法的逻辑基础。 接着,皮亚诺根据自然数定义整数:设a,b为自然数。则数对(a,)即a-b定义整数。当a>b,a/span> 有了整数概念,再通过有序对定义有理数:若n,m为整数,则有序对(n,m)(m<>0)即n/m定义一个有理数。 这样,皮亚诺应用数学符号和公理方法,在自然数公理的基础上,简明扼要地建立起自然数系、整数系和有理数系。当然用公理的、逻辑的方法构造出来的数系,使一数学家感到很不自然。他们认为这是将本一清楚的概念做了不可理解的推广,然而,实数理论的建立,谱写了19世纪数学史上辉煌的一章。
7,什么称为实数
基本概念实数可以分为有理数和无理数两类,或代数数和超越数两类,或正数,负数和零三类。实数集合通常用字母 R 或 R^n 表示。而 R^n 表示 n 为实数空间。实数是不可数的。实数是实分析的核心研究对象。 实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后 n 位,n 为正整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。 ①相反数(只有符号不同的两个数,我们就说其中一个是另一个的相反数) 实数a的相反数是-a ②绝对值(在数轴上一个数所对应的点与原点0的距离) 实数a的绝对值是: a= ①a为正数时,a=a ②a为0时, a=0 ③a为负数时,a=-a (任何数的绝对值都大于或等于0。) ③倒数 (两个实数的乘积是1,则这两个数互为倒数) 实数a的倒数是:1/a (a≠0)历史来源埃及人早在大约公元前1000年就开始运用分数了。在公元前500年左右,以毕达哥拉斯为首的希腊数学家们意识到了无理数存在的必要性。印度人于公元600年左右发明了负数,据说中国也曾发明负数,但稍晚于印度。 直到17世纪,实数才在欧洲被广泛接受。18世纪,微积分学在实数的基础上发展起来。直到1871年,德国数学家康托尔第一次提出了实数的严格定义。相关定义从有理数构造实数 实数可以用通过收敛于一个唯一实数的十进制或二进制展开如 编辑本段相关性质基本运算实数可实现的基本运算有加、减、乘、除、乘方等,对非负数还可以进行开方运算。实数加、减、乘、除(除数不为零)、平方后结果还是实数。任何实数都可以开奇次方,结果仍是实数,只有非负实数,才能开偶次方其结果还是实数。完备性作为度量空间或一致空间,实数集合是个完备空间,它有以下性质: 所有实数的柯西序列都有一个实数极限。 有理数集合就不是完备空间。例如,(1, 1.4, 1.41, 1.414, 1.4142, 1.41421, …) 是有理数的柯西序列,但没有有理数极限。实际上,它有个实数极限 √2。实数是有理数的完备化——这亦是构造实数集合的一种方法。 极限的存在是微积分的基础。实数的完备性等价于欧几里德几何的直线没有“空隙”。“完备的有序域”实数集合通常被描述为“完备的有序域”,这可以几种解释。 首先,有序域可以是完备格。然而,很容易发现没有有序域会是完备格。这是由于有序域没有最大元素(对任意元素 z,z + 1 将更大)。所以,这里的“完备”不是完备格的意思。 另外,有序域满足戴德金完备性,这在上述公理中已经定义。上述的唯一性也说明了这里的“完备”是指戴德金完备性的意思。这个完备性的意思非常接近采用戴德金分割来构造实数的方法,即从(有理数)有序域出发,通过标准的方法建立戴德金完备性。 这两个完备性的概念都忽略了域的结构。然而,有序群(域是种特殊的群)可以定义一致空间,而一致空间又有完备空间的概念。上述完备性中所述的只是一个特例。(这里采用一致空间中的完备性概念,而不是相关的人们熟知的度量空间的完备性,这是由于度量空间的定义依赖于实数的性质。)当然,R 并不是唯一的一致完备的有序域,但它是唯一的一致完备的阿基米德域。实际上,“完备的阿基米德域”比“完备的有序域”更常见。可以证明,任意一致完备的阿基米德域必然是戴德金完备的(当然反之亦然)。这个完备性的意思非常接近采用柯西序列来构造实数的方法,即从(有理数)阿基米德域出发,通过标准的方法建立一致完备性。 “完备的阿基米德域”最早是由希尔伯特提出来的,他还想表达一些不同于上述的意思。他认为,实数构成了最大的阿基米德域,即所有其他的阿基米德域都是 R 的子域。这样 R 是“完备的”是指,在其中加入任何元素都将使它不再是阿基米德域。这个完备性的意思非常接近用超实数来构造实数的方法,即从某个包含所有(超实数)有序域的纯类出发,从其子域中找出最大的阿基米德域。高级性质实数集是不可数的,也就是说,实数的个数严格多于自然数的个数(尽管两者都是无穷大)。这一点,可以通过康托尔对角线方法证明。实际上,实数集的势为 2(请参见连续统的势),即自然数集的幂集的势。由于实数集中只有可数集个数的元素可能是代数数,绝大多数实数是超越数。实数集的子集中,不存在其势严格大于自然数集的势且严格小于实数集的势的集合,这就是连续统假设。该假设不能被证明是否正确,这是因为它和集合论的公理不相关。 所有非负实数的平方根属于 R,但这对负数不成立。这表明 R 上的序是由其代数结构确定的。而且,所有奇数次多项式至少有一个根属于 R。这两个性质使 R成为实封闭域的最主要的实例。证明这一点就是对代数基本定理的证明的前半部分。 实数集拥有一个规范的测度,即勒贝格测度。 实数集的上确界公理用到了实数集的子集,这是一种二阶逻辑的陈述。不可能只采用一阶逻辑来刻画实数集:1. L?wenheim-Skolem定理说明,存在一个实数集的可数稠密子集,它在一阶逻辑中正好满足和实数集自身完全相同的命题;2. 超实数的集合远远大于 R,但也同样满足和 R 一样的一阶逻辑命题。满足和 R 一样的一阶逻辑命题的有序域称为 R 的非标准模型。这就是非标准分析的研究内容,在非标准模型中证明一阶逻辑命题(可能比在 R 中证明要简单一些),从而确定这些命题在 R 中也成立。拓扑性质实数集构成一个度量空间:x 和 y 间的距离定为绝对值 x – y。作为一个全序集,它也具有序拓扑。这里,从度量和序关系得到的拓扑相同。实数集又是 1 维的可缩空间(所以也是连通空间)、局部紧致空间、可分空间、贝利空间。但实数集不是紧致空间。这些可以通过特定的性质来确定,例如,无限连续可分的序拓扑必须和实数集同胚。以下是实数的拓扑性质总览: 令 a 为一实数。a 的邻域是实数集中一个包括一段含有 a 的线段的子集。 R 是可分空间。 Q 在 R 中处处稠密。 R的开集是开区间的联集。 R的紧子集是有界闭集。特别是:所有含端点的有限线段都是紧子集。 每个R中的有界序列都有收敛子序列。 R是连通且单连通的。 R中的连通子集是线段、射线与R本身。由此性质可迅速导出中间值定理。编辑本段扩展与一般化实数集可以在几种不同的方面进行扩展和一般化: 最自然的扩展可能就是复数了。复数集包含了所有多项式的根。但是,复数集不是一个有序域。 实数集扩展的有序域是超实数的集合,包含无穷小和无穷大。它不是一个阿基米德域。 有时候,形式元素 +∞ 和 -∞ 加入实数集,构成扩展的实数轴。它是一个紧致空间,而不是一个域,但它保留了许多实数的性质。 希尔伯特空间的自伴随算子在许多方面一般化实数集:它们可以是有序的(尽管不一定全序)、完备的;它们所有的特征值都是实数;它们构成一个实结合代数。
实数包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的点一一对应的数。本来实数仅称作数,后来引入了虚数概念,原本的数称作“实数”——意义是“实在的数”。
留学时间网声明:登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述,如文章侵犯了您的权益,可以联系客服处理。
评论列表